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The theory of a broadband constant directivity transducer is developed. The transducer is an array of
isophase, omnidirectional elements on an acoustically transparent spherical surface. It is shown that, with
appropnate amplitude shading of the array elemcnts, the beam pattern has no side lobes and the
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ity 1¢ constant at all frequencies above 2 ¢
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radlus of the sphere.) A shading function is derived, which consists of a simple linear combination of

powers of cos 8, and several beam patterns are calculated.
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INTRODUCTION

A constant beamwidth transducer, that is, a transduc-
er whose beam pattern is independent of frequency over
a wide frequency range, is desirable for many applica~
tions in ultrasonics and underwater acoustics. Some
examples of possibie applications for such a transducer
are (i) broadband echo ranging, (ii) high data rate com-

mun lr‘nhnn

and (|||\ nondegtructive ultrasonie testing

sting,

medical dmgnosxs, and materials research. Constant
beamwidth transducers designed so far involve the use
of arrays of elements either interconnected by elaborate
compensating networks' or delay lines,  or arranged in
a complicated three-~dimensional pattern.® All these
transducers exhibit constant beamwidth only over a

imite neluidih
limited bandwidth.

T thic nanmam  wen aboo: fbhat 36

L0l uilS paper, we Snow wnat il is
possible to obtain a constant beamwidth transducer by
suitable amplitude shading of an array of isophase,
omnidirectional elements on an acoustically transparent
spherical surface. This transducer has the advantage
that its beam pattern has no side lobes, and is indepen-
dent of frequency at all frequencies above some lower-
bound value determined by the beamwidth and the radius
of the sphere.

Amplitude shading of a spherical array as the basis
of a constant beamwidth transducer was first suggested

Lo W T
0y W, dJd.

Moansts 4 A Lo oo P,

Trott.” In Ref. 4 the transmitting current re-
sponse’‘? and the free-field voltage sensitivity of shaded
spherical arrays are also considered, while in this
paper the discussion is limited to beam patterns.

the con:

the conditions are de

a riv
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beamwidth farfield radiation pattern from an array on
an acoustically transparent sphere. These conditions
are used to develop an optimum shading function. Some
calculated beam patterns are presented in Sec. II. The
results are compared in Sec. IlI with the recently pro-
posed constant beamwidth transducer consisting of a

shaded array on an acoustically rigid sphere.

ived for
]

In Sec I,

I. THEORY

Consider a continuous distribution of sources on an
acoustically transparent sphere. Then, each area
element dA of the sphere is a monopole source of
strength S(6o)dA, where S(8,) is the source strength
per unit area. The sources are amplitude shaded, so
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S is a function of the polar angle 8, of the area element,
The acoustic pressure (from element dA) at some point
r outside the sphere is®

dp=~ikeple™™ 70 /|r — 1, |)S(8)dA , (1

where 1, is the position vector of the area element dA,

¢ and p are the sound speed and density, respectively,
of the medium in which the array is immersed, and 2

is the wavenumber. All sources are assumed to radiate
in phase at the same angular frequency w, and the e~ !
time factor is omitted from all expressions, It is con-
venient to work in spherical. coordinates and accord-

e rannla faanatinan in
the Green’s function in Eq.

(1) ig rewritten

ingly, (1) is rewritten in
terms of the spherical coordinates of r and r,. The
total pressure at point r is (see, for example, Morse
and Ingard®)

plr, 6) =pck’a 2 A pimka) by (kr) P, (cosp), (2)
m=0

where a is the radius of the sphere, P, (cos8), is a
Legendre polynomial, and j,,, k., are spherical Bessel
and Hankel functions, respectively. It is convenient to
take the beam axis as the reference direction for the
polar angles 6 and 8,. Also, the shading function is in-
dependent of the azimuthal angle ¢ Therefore, the co-
efficienis A, in ihe above series are independent of §
and ¢, and are determined from the shading function

as follows:

T
L=(m %Jf 5(64) P,, (cos8y,) sind, db,. 3)
Q

The expression for the farfield pressure is obtained by
taking the limit of Eq. (2) as »~ «,

+i [~Aqjo(ka) Py (c086) +Ass(ka) Py (CoSO) = .« k. @

For a constant beamwidth transducer we want the far-
field pressure amplitude | p.! to be independent of ka

over as wide a frequency range as possible. Consider
what happens at ka high enough so that one can use the

asymptotic form of §,(ka). Then,
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bylr, 8)= pce™ [y {[A P, (cos8) + APy {cosB) +. « - ] cos(ka)

—ilAgPy(cos8) +A,P, (cos8) +« . - | sin(ka)}. (5)

The shading function S${8) can also be expanded as a

geries of Legendre nolvnomials

geries o1 L.egendre polynomials,

express S(8) as the sum of an even part §,(68) (even with
respect to the variable cosf) and an odd part Sy(6) where,

It is convenient to

S.(8)=APqy(cos8) +A, P, (cos8) +- . -,
and
Sol6)=A, P, (cos6) +A,P; (cosb) + - ... (6)

From Egs. (5) and (8) it follows that the farfield pres-
sure amplitude can be expressed as

| A7, 0) | =(oc/7) [{So(8) coslka)l +{5.(6) sin(ka)}*]'/ 2.
(7
\é)

Finally, suppose the shading function is chosen so that

Lo, )] =(pc/¥) | So(0)] (8)

and is independent of ka.

Obviously it is important to know at what values of

bha one can annravimata a ganharical Racanl funptinn of
R@ Che Can apprexXimale 4 Spagerical DSesse: unglion of

order m by its asymptotic form, It can be shown® that
the asymptotic form applies when (ka )2 > m® ~%. Thus,
the higher the order »n the higher the value of ka before
Fm(ka) approaches its asymptotic value, From this fact,
and from the resuits presented in the previous para-
graph, emerge the following two criteria for amplitude
shading on an acoustically transparent sphere (to achieve
constant beamwidth), o

(i) Choose a shading function whose expansion, in
Choose 2 s whos on, in

Legendre polynomlals, involves the least number of
terms possible for the given beamwidth, Alternately,
if m, is the highest-order term in Eq. (4) which makes
an observable contribution to p,(r,8), choose S(8),
such that m, has the iowest possibie vaiue.

(ii) Choose S(8) such that its odd and even parts are
equal in magnitude. Note that this criterion is auto-
matically satisfied, if the shading function is finite in

the upper hemisphere (0< 8< 7/2) and zero in the lower
hemlsphere (r/2=6=<r). The only way to obtain $(8)=0
in the range 7/2< 6 =17 is for S,(8), S,(8) to be equal in

amplitude but have opposite sign,

Note that when criteria (i) and (ii) are sai , it
follows from Eq. (8) that the beam pattern will be the
same as the shading function, Therefore, to eliminate
side lobes it is necessary to choose an S(¢) which de-

creases smoothly to zero as a function of 6.

tisfied, it

According to Eq. (8) the beam pattern will be sym-
raetrical about the 8 =90° plane, with equal farfield
pressure arplitude in the forward (8 =0°) and back (8
=180°) directions.

The second of the above criteria was the one mainly
used as a guide in developing an acceptable shading func-
tion. Initiaiiy attempts were made to obtain a suitabie

Acoizct Qan Ase L ~a
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shading function by direct linear combination of a limited
number of Legendre polynomials. However, the individ-
ual P, (cosé) are strongly oscillatory functions and it is
not immediately obvious how to combine them to cancel

in the lower hemisphere

hemisphere, A more convenient starting
function is cos”@, which varies smoothly as a function
of 8 and, as shown below, simple linear combinations

of powers of cosf can be developed which, to a very
good approximation, satisfy criterion (ii). The simplest

L,Ulllullldl.luu Ul pUWt:lb Ul LUDU wuu,u Lellutj I.U Zero Lll
the lower hemisphere is

f.(8)=4(1 +cosé)cos™d. {9)

In the lower hemisphere, f, has either a shallow maxi-
mum or 2 minimum depending on whether » is even or
odd, The magnitude of this peak is small, For ex-

~mnle whe 1 the peak maenitude of £.(2)
ampie, wiien # =1, e peax magniwuae of 1\l

range 7/2=60=q, is 18 dB below the value of f; in the
forward direction (8 =0°); and as » increases, the can-
cellation between the two terms in f,(8) becomes even
stronger. Further cancellation is achieved by forming
a iinear combination of f, () and f,,,{6) and choosing
the coefficients, so that the peak value of f£,(6) is ex-
actly canceled by f, ,(4). Let 8 be the value of 6 at
which £,(6) has a maximum (or minimum) in the lower
hemisphere. From Eq. (9) it follows that,

cost’==[n/(+1)].

I ANV AT IAYERE S PUSRDS VS
Let = |]”.1\U IRVENALAN De l.lle ratio of dlllplll.uut:b of

fueq and f, at 8'. Then the appropriate linear combination
of £, and f,.;, normalized to unity at =0°, is

s

in the
in ne

S0 =755 [0+ (6]

B3

+1

n
——— c0s"6 + 3 cos™ 1+ ——— cos™?%0.

YD)
2\2n+1) aan+1j

_ (10)
This function is close to zero over the entire range

/2= 6sm, When n=1, the peak magnitude of 5,(6) in
the lower hemisphere is 36 dB below unity, and decrease
further with increasing »n.

The series expansion of cos"¢ in Legendre polynomi-
als® involves only polynomials of order less than or
equal to n. Thus, the highest order term in the series
expansion of S,(6) is of order n+ 2, It is possible that,
for a given beamwidth, other shading functions can be
developed which involve an even smaller number of
Lnegeulue puLyuuuud.L:. than the Col‘l‘espl‘)udlng 9, \ul.
What can be said at this stage is that the calculated
beam patterns, for Sn(B) shading, show a constant beam-
width and absence of side lobes. These beam patterns
are shown in the next section.

il. CALCULATED BEAM PATTERNS

For several shading functions S,(6) beam patterns
were calculated by numerically evaluating and summing

tha tanmg in Bg. (4) A comnutar nrgoram

davalanad
i€ WIS 1 A{. \&%/.

A computer program, developed
by Van Buren,’ was used. In this program the coeffi-
cients A, are obtained by numerical integration (Gauss-
ian quadrature) of the integral in Eq. (3), and the
Legendre polynomials and Bessel functions are obtained
by use of appropriate recursion relations.
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FIG. 1.
function of ka, for various values of the polar angle 6,
shading function is $,(68).

One shading function used was S;(6).

it follows that

From Eq. (10)

(11)

Figure 1 shows the calculated farfield pressure, as a
function of ka, for various values of the polar angle 6.

It can be seen that, for ka= 8, the beamwidth becomes
approximately independent of frequency. Such pressure
amplitude variations as remain are small, less than

0.5 dB, in the range 0°< =< 60°, Larger amphtude vari-
ations are observed at 8= 75°, but here the total signal
is small (at least 20 dB below the signal in the forward
direction.)

S,(6) =% cos8+3cos’a+ Fcos'g,

The beam pattern obtained with S;(6) shading is the
broadest possible constant beamwidth pattern for this
type (powers of cos®) shading function. Examination of
the data in Fig. 1 shows that for S,(6) shading the beam
pattern is approximately cos?d, For S,(8) with higher
values of #, the beam pattern becomes progressively
it follows that
the beam pattern for S,(6) is cos™'9, Therefore, the
-6 dB total beamwidth, 26,,,, for a given S,(8), can be
determined from the equatlon,

narrogwer.

B
From the results in Sec. i,

B
cos™ 8,,,=0.5

The numerical solution of Eq. (12) is plotted in Fig, 2.

50— 10
N
b N
S~
H34O\ \\ -08
oz o
o RS
E 30+ Sso —06 <
o ~~e_ S
2k T g
Za0 N TTmee—e__ a4
< T &
.3
IS
3 —q
L L 1 1 L . 1 1 1
o] 10 20 30 40 50 60 70 80 90 100

ORDER n OF SHADING FUNCTION Sq (8)

FIG. 2. The full line shows how the half-angle (- 6 dB point)
of the beam pattern depends on the order » of the shading func-
tion §,(6). The dashed line shows the ratio ¢/a as a function of
n, where ¢ is the radius of the shaded spherical cap and a is

the radius of the sphere.
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FIG. 3. Comparison of the shading functions Sgg(6) (full line)

and P4 (cos8) (dashed line).

Calculations were also made for the very narrow shad-
ing function.

Sg5(6) =F% c0s®38+ § cos®® 0+ £5 cos®s, (13)

The value »=65 was chosen because qn,(ﬂ) approximates
closely the first peak of the Legendre polynomial
Pyy(cosé), at least down to the — 6 dB point. This can
be seen in Fig. 3, where the two functions are com-
pared. [The reasons for comparison with P;,(cosé )
shading are given in the next section.] The caiculated
farfield pressure amplitude is plotted in Fig, 4. It can
bhe seen thnt for ka 2180 the heam nattern bacomas

een that, 1or g £2120, the beam patlern becomes

essentially independent of frequency. Also there are no
side lobes.

In theory, the shading function S,(6) extends over the
entire sphere. However, calculations show that for
large » the shading function can be terminated at the
angle for which S,(6) ~d5, and such termination does
not affect the beam pattern. Therefore, in practice, for
narrow beams it is sufficient to shade a spherical cap
of radius ¢, smalier than the radius a of the sphere.
The ratio c/a is plotted, as a function of n, in Fig. 2.

Finally, it is of interest to determine at what value of
ka [for a given §, (0)] the farfield pressure attains its

aauvmntatic camoboo AR VR

asympiotic, constant beamwidth, value. For 3"(9) shad-
ing, the highest term in the series expansion [Eq. (4)]
for the farfield pressure is of order n+ 2. As stated in
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FIG. 4

Caleulated relative farfield pressure amplitude,

as a
function of ka, for various values of the polar angle . The full
and dashed lines are for Sgg(6) and Py, (cos8) shading functions,

respectively.
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FIG. 5. Values of the coefficient A, in the Legendre series

expansion of the shading function,

Thp full and daghed lineg

are for Sg;(8) and Pyy(cosd) shading functions, respectively.

Sec. I, the spherical Bessel functjon j,,,(ka) attains its
asymptotic form when (ka)*>(n+ 2)° - . Our calculations
show that the farfield pressure attains its asymptotic
when ka~ 3(n+2),

value v
value wher a\n

1. DISCUSSION

Recently, Rogers and Van Buren® have presented the
theory of a broadband constant beamwidth transducer
achieved by amplitude shading the velocity distribution
on an acoustically rigid sphere. It is of interest to com-
pare their results with the data presented in this paper.
When the radial velocity distribution on the rigid sphere

is u(8) ™'t then the radiated farfield pressure is®

1en 1€ radlaled Iarileld pressure is

(7, 8) == pc &/ by EA P (cosﬂ)T

il (14
" Ry \Ra)

where &, is the derivative of the spherical Hankel func-
tion, and the time dependence ¢*“* has been omitted.
The A, are the coefficients in the Legendre expansions
of the radial velocity amplitude shading function and are
cbtained from Eq. (3) by substituting v(6) for S(¢). At
values of ke large enough so that the asymptotic form
of h;(ka) can be substituted in Eq. (14), the farfield
pressure is

D7, 8)==pca (e /7) v(a), (15)

and the beam pattern is independent of frequency.

Comparison of the conditions leading to Eq. (15) with
those for Eq. (8) shows that only criterion (i) of Sec. I
applies for amplitude shading of an array on an acousti-
cally rigid sphere (to achieve constant beamwidth). How-

ever, as explained in Sec. I, if the array is confined to
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the upper hemisphere v(8) =0 in the range 7/2=<6=<rp,
then criterion (ii) will be automatically satisfied. There-
fore, for narrow beamwidths the same conditions apply
to amplitude shading of arrays on acoustically rigid and
and the shading func-
tion, which is usable for one array, should also apply

to the second case.

noonatinnlly tnananarant anhanaa
acoustifauy wransparent spaeres,

The constant beamwidth transducer proposed by
Rogers and Van Buren is a spherical cap of half angle
a, shaded so that the normal velocity is given by v(6)
=P,(cos8), where a, is the first zero of the Legendre
polynomial P,. The array is terminated at a,, so that
v(8) =0 for 6>a,. In Fig. 4 the beam patterns for
Py{cosd) and us5{€) shading functions are compared,
where Sg;(6) was chosen because it approximates closely
the first peak of P”(cose) down to the — 6 dB point. It
can be seen from Fig. 4 that the beam pattern for Sg(6)
is a closer approximation to a constant beamwidth pat -
tern. For example, at 6 =5° the farfield pressure for
Pyo(cos6) shading shows a peak to peak variation of 2.7
dR in the range 80 < ko <400,

Further comnarison

urther comparisor

is made in Fig. 5, where the coefficients 4, in the
series expansion in Legendre polynomials of the two
shading functions are plotted as a function of m, It

can be seen that the series for Sg;(6) involves fewer co-
eificienis, and therefore this shading function satisfies
criterion (i) more closely than does Py,(cosd). The im-
provement in constant beamwidth characteristics is at
the expense of transducer size. The ratio ¢/a, where
¢ is the radius of the shaded spherical cap, is 0.42 and
0. 23 for S;(6) and P (cosf) shading, respectively.
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